For: karonis
Printed on: Tue, Nov 2, 1993 15:54:19

Document: Channel Access Links
Last saved on: Thu, Sep 3, 1992 15:22:04

Links in a Distributed Database:
Theory and Implementation

Nicholas T. Karonis and Martin R. Kraimer
December 1991

1 Introduction

Thisdocument addresses the problem of extending database links across I nput/Output Con-
troller (10C) boundaries. It laysafoundation by reviewing the current system and proposing
an implementation specification designed to guide all work in this area.

Therest of the document describes animplementation that islessambitiousthan our formal -
ly stated proposal, one that does not extend the reach of all database links across1OC bound-
aries. Specifically, it introduces an implementation of input and output links and comments
on that overall implementation. Finally, we include a set of manual pages describing each
of the new functions the implementation provides.

Although we have limited the scope of the implementation by not extending the reach of all
database links, the work we have done strictly adheres to the implementation specification
formally proposedin section 2. Again, all continuingwork inthe extension of databaselinks
across |0C boundaries should adhere to the same.

2 Theory of Operation

In this section we devel op the theoretical framework that serves asafoundation for all work
involving the extension of database links across |OC boundaries.

2.1 The Current System

A database is made up of afinite non—-empty set of records . We can ““ connect” these re-
cordsusinglinks; forward-typelinks(forward links), input—typelinks (input links), and out-
put-typelinks (output links). Thelinksind defineabinary relation 4., aset of ordered pairs,
on set D. From £, we can construct a new binary relation € on 9D by taking the transitive
symmetric reflexive closure of 4. Thisnew binary relation C isthe equivalencerelation in-
duced by 4. Relation C partitions the database < into a set of equivalence classes. In other
words, relation C assures that those records that are somehow connected are in the same
equivalence class and those records that are not connected are in different equivalence
classes.

Currently we load a database, possibly with many equivalence classes, onto asingle |OC.
We could take a database with multiple equivalence classes and ““ split” it by loading some
of therecordsonto adifferent IOC. Thiscould only be doneif wewere sure that the records
we were moving were not ‘“ connected”’ to any of the records that were staying, that is, we
never separated recordsthat werein the sameequivalenceclass. If wewantedto split adata-
base, we would be forced to move entire equivalence classes at atime. Thisrestriction on

splitting databases, moving only entire equival ence classes at atime, exists because we cur-
rently cannot process database links across |OC boundaries. Thisis something we would
like to change.

2.2 Motivation for Something New

Database records are often directly associated with devices and each device is attached to
asingleIOC. Those database recordsthat are directly associated with adevice must reside
on the same 10C to which the device is attached.

Frequently, actionstaken by one device depend on the state of another device. Thisinterac-
tionisfacilitated by the database records associated with each device communicating over
database links. Thisworksfineif the two devices are attached to the same 1OC, but is cur-
rently not possibleif they are not.

2.3 Our Proposal

Simply stated, we are proposing to extend the reach of all database links across 10C bound-
aries. Before stating our proposal moreformally, we must first make adistinction in theter-
minology regarding databases.

When designing adatabase, it isunderstood that all therecordsare stored in asingledatabase
fileand that all therecordsin that fileresideonasingle |OC. Wewould now like to change
that understanding and design databases in which all the records are not necessarily stored
in the same database file and, therefore, do not necessarily reside on the same IOC. This
introduces ambiguity to the word database.

Theword database could now mean the set of records physically stored in asingle database
fileand placed onto asingle IOC, or it can refer to the database as seen by the database de-
signer — a set of records that are connected to each other independent of where each record
resides. Until now, thosetwo definitionshave alwaysbeen the same; sincetherewasnoinde-
pendence regarding where records resided, there was no need to distinguish between them.

We call the set of records that are physically stored in asingle database file and placed onto
asinglelOC aphysical database. Theset of records, asviewed by the database designer, that
are possibly connected to each other using database links we call alogical database.

With that distinction, we are now ready to state the proposal with itsimplementation specifi-
cation.

We propose to extend the reach of all database links across IOC
boundaries. Indoing so, we must assurethat thereisno semantic dif-
ferencein placing alogical database entirely into one physical data-
base or arbitrarily partitioning it over any number of physical data-
bases.

By extending the reach of database links we are introducing opportunities for more things
togowrong (e.g., problemsassoci ated with the communi cationshardware and software) that
did not exist before. In dealing with these new problemswe may be required to make addi-
tionstothelist of conditionsthat canraisealarmsor evenadd new alarmtypes. Weare, there-

fore, creating an environment where adatabase designer can determinewhether or not alog-
ical database is partitioned over many physical databases simply by observing alarm
conditions that were never possible before. Thisisnot aviolation of the proposal’simple-
mentation specification asit wasintended. The proposal’sintention isto assure that the se-
mantics of all the parameters specified during database design (e.g., process passive versus
not process passi ve specifications on input and output links) are preserved. Itisnot intended
to make the partitioning of logical databases entirely indiscernible.

2.4 Maintaining Loosely Coupled 10Cs

In addition to preserving the semantics of all database links, an implementation that extends
the reach of database links across |OC boundaries must also strive to keep the IOCsloosely
coupled. Thisconstraint isonethat is shared by all components of the system.

By itsvery nature, ** connecting’” 10Cswith databaselinksinducestighter coupling between
thelOCs. That isunavoidable. However, different implementations might increase the cou-
pling unnecessarily.

It isour goa to minimize the inherent increased coupling effect introduced by any imple-
mentation of database links across I0C boundaries. To that end, we designed an imple-
mentation that insuresthat no |OC waits for communication with another 10OC by introduc-
ing a new locking primitive, LOCKNOWAIT. Additionally, we insure that no 10C is
critically dependent on the existence of any other 10C through the use of alarms and a con-
nection handler routine.

3 Input Links

Theimplementation includesinput links (INP, SDIS, DOL, etc.) that are nonprocess passive
and either maximize severity or nonmaximize severity. Input links are essentially managed
using channel access. A newly—spawned task establishesmonitorson theremote source pro-
cess variables.

3.1 Detecting Linksthat Refer to Remote Process Variables

During IOC initialization, specifically during database initialization, an attempt is made to
resol ve the database addresses of the processvariablesnamed by theinput links. Thisresolu-
tion will only succeed if both the source and destination records of the link are in the same
physical database. If the resolution fails, it isassumed that the link is referring to aprocess
variable in another physical database.

Each input link that has unresolved database addresseswill berepresented by anodeinalist,
thelnput List. AsIOC initialization continues, specifically during record support initializa-
tion, anode is created and added to the Input List for each such link.

3.2 Establishing Monitors on Remote Process Variables

At theend of 10C initialization, anew task is spawned. Thisnew task’s responsibility isto
establish a monitor on the source process variables represented by each of the elementsin
the Input List and wait for eventsto occur. Each monitor isnot only responsiblefor reporting
the value of the source field, but also the alarm severity and status of the source record.

3.3 Waiting for Events and Reading Values

After al initialization database processing begins. Each time amonitor reportsin, the new
value, alarm status, and alarm severity of the source record are copied into the appropriate
node in the Input List. Note that the new valueis not copied into the destination record.

When the record specifying the input link gets processed, the connection to the remote pro-
cess variable is checked. [If the connection has been lost, the destination record’s alarm
condition israised to indicate theinput value may beinvalid. If the connectionisintact, the
value from the node in the Input List is copied to the destination field. If theinput link also
reguests maximize severity, the destination record’'s alarm status is also updated using the
source record’s alarm severity.

4 Output Links

Theimplementationincludesoutput linksthat are both nonprocess passi ve and nonmaximiz-
ing severity. Output links are essentially managed by channel access. The output valuesare
written to elements in a shared list. Later a sleeping task awakens, traverses the list, and
writes the value to the remote target process variable.

4.1 Detecting Links that Refer to Remote Process Variables

During IOC initialization, specifically during database initialization, an attempt is made to
resolve the database addresses of the process variables named by the output links. Thisreso-
lution will only succeed if both the source and destination records of thelink arein the same
physical database. If the resolution fails, it isassumed that the link is referring to aprocess
variable in another physical database.

Each output link that has unresolved database addresses will be represented by anodein a
list, the Output List. AslOC initialization continues, specifically during record support ini-
tialization, anode is created and added to the Output List for each such link.

Also during database initialization ashared binary semaphore, LookAtBuffer, isinitialized
to zero. Thissemaphoreisused for inter task communication and isexplained in detail | ater.

4.2 Establishing Connections to Remote Process Variables

At the end of 10C initialization, a new task is spawned, an output demon. This new task’s
responsibility is to establish connections and connection handler routines for each of the
nodes in the Output List and then wait on the binary semaphore, P(LookAtBuffer), that is
signalled during record processing.

4.3 Writing Vaues

Each time an output link referring to aremote process variableis processed, the value of the
source field in the database record is copied into the appropriate node in the Output List.
After the field has been copied, the node in the Output List is moved to the Write List and
the binary semaphore is signalled to wake the waiting output demon, V(L ookAtBuffer).

Eventually, the output demon awakensand traversesthe WriteList. For each nodeinthelist,
the connection to the remote destination process variable is checked. If the connection is
broken, the source record’s alarm condition israised to indicate the problem. If the connec-
tionisintact, thevaluefromthenodeinthe Write Listiswritten to the destinationfield using
channel access and the element is returned to the Output List.

In section 4.2 we noted that a connection handler routine was established for each node in
the Output List. Theconnection handler routineisexecuted every timethe connection status
of one of the channels changes. If the connection status goes from disconnected to con-
nected, the connection handler checksif theval ue associated with therelevant nodewasever
requested to be written. If it was, the value isimmediately moved to the Write List (if not
aready there) and the binary semaphoreissignalled, V(L ookAtBuffer). Notethat thevalue
is scheduled to be written here even though there was not necessarily awrite pending as a
result of the associated output link being processed.

As stated previously, we are using one task to copy the database value into the Output List
node and then signalling another task, the output demon, to write the value to the remote
processvariable. We therefore cannot be guaranteed that the output demon will wakeupin
timetowritethevaluefromthelist beforeanew valuefrom the database overwritesit. When
processing an output link that refersto aremote processvariable, if it isdiscovered that the
new output valueisoverwriting the previous val ue that was never sent to the remote process
variable, the source record’s alarm condition is raised to report the lost value.

4.4 Task Synchronization

Theimplementation of output linkscallsfor choreography amongst multiple processes. The
solutionto the problemsintroduced by amultipleprocesssystemisnontrivial and, therefore,
warrants closer inspection. Theimplementation for output links callsfor threeindependent
processes, possibly executing simultaneously. All three processes interact with the Write
List.

4.4.1 Producersand Consumers

Two of the processes are producer s asthey are responsible for placing nodes onto the Write
List. Thefirst process executes docaPutLink() during record processing. The second pro-
cess executes the connection handler routine my_connection_handler() when the connec-
tion status of a channel changes.

Thethird processisaconsumer asit isresponsible for removing nodes from the Write List.
This process is the one introduced in section 4.2. 1t is the output demon that is explicitly
spawned and executes dbCaProcessOutlinks().

All three processes require mutually exclusive accessto the Write List. Mutually exclusive
accessis provided by the lock Buffer. Each node in the Output List also has its own lock.
Additionally, each node can identify whether or not it is on the Write List by inspecting its
statefield and determineif itsvalue hasever been requested to bewritten to aremote process
variable by inspecting its ever_written field.

4.4.2 Locking

In order to maintain loose coupling between |OCs, our implementation introduces a second
locking primitive, LOCKNOWAI T, designed to be used with the traditional locking primi-
tive LOCK.

LOCKNOWAIT works asfollows. If the lock being sought is available, LOCKNOWAIT
takesthelock and returnsimmediately with the boolean value TRUE. If thelock isunavail-
able, LOCKNOWAIT simply returns immediately with the Boolean value FALSE.

The basic differences between LOCK and LOCKNOWAI T arethat LOCKNOWAIT 1) does
not wait for alock it cannot immediately acquire and, 2) returns a Boolean value indicating
whether or not it successfully acquired the lock.

This maintains the loose coupling between IOCs by assuring that dbCaPutLink() never
walits for data to be written between 10Cs.

4.4.3 TheAlgorithm

When one of the producer s places a node onto the Write Ligt, it signals the consumer using
the binary semaphore introduced in section 4.1, V(LookAtBuffer).

Initially, each output link that refers to a remote process variable is represented by a node
inthe Output List and the Write List isempty. The following is the pseudocode for each of
the producers.

dbCaPut Li nk()

if (LOCKNOMAI T node)
if (copy value is successful)
node. ever_witten = TRUE
if (node.state == OFF_WRI TELI ST)
node. state = ON_WRI TELI ST

LOCK Buffer
push node onto Wite List
UNLOCK Buf f er
V(LookAt Buf f er)
el se
raise alarm/* overwite */
endi f

el se
print error nmessage
endi f
UNLOCK node
el se
raise alarm/* node already | ocked */
endi f

my_connecti on_handl er ()

if (connection is re—established)
LOCK node
if (node.ever_witten & node.state == OFF_WRI TELI ST)
node. state = ON_WRI TELI ST
LOCK Buffer
push node onto Wite List
UNLCCK Buf f er
endi f
UNLOCK node
V(LookAt Buf f er)
endi f

The consumer is signalled by a producer when the producer places a node onto the Write
List. The consumer then wakes up and processes each node in the list.

Each node’sconnection statusischecked. If the connectionisintact, thevalueiswritten and
the node isremoved from the Write List. If the connection is broken, an alarm conditionis
raised and the node is moved to atemporary holding list, the Disconnected List.

Once al the nodesin the Write List have been processed, i.e., returned to the Output List or
moved to the Disconnected List, the nodeson the Disconnected List arereturned to the Write
List. Thefollowing isthe pseudocode for the consumer.

dbCaProcessQutlinks() /* output denon */

whi | e (TRUE)
P(LookAt Buf fer)
done = FALSE
whil e (!done)
LOCK Buffer
pop node off Wite List
UNLOCK Buf fer
i f (node)
LOCK node
if (this node’s channel is connected)
ca_put() node’s val ue
state = OFF_WRI TELI ST
el se
rai se node’s alarm/* disconnected */
push node onto Di sconnected List
endi f
UNLCCK node
el se
done = TRUE
endi f
endwhi | e
LOCK Buffer
Move nodes from Di sconnected List onto Wite List
UNLOCK Buf f er
endwhi | e

4.4.4 An Optimization

In inspecting the interaction between the first producer (the one executing dbCaPutLink()
during record processing) and the consumer, we discovered the opportunity for optimiza-
tion. Consider the following scenario. The system isinitialized with an empty Write List.
During record processing the first producer calls dbCaPutLink(). Indoing so, it locksthe
node, copies the value, moves the node onto the Write List, signals the consumer, and un-
locks the node.

Eventually the consumer wakesup asaresult of being signalled by the producer. 1t popsthe
node off the Write List, locksthe node, writes the value, returns the node to the Output List,
and unlocks the node.

Consider the amount of context switching that occurs if the consumer starts executing im-
mediately after the producer signalsit. After popping the node off the Write List, the con-
sumer attempts to lock the node. Thisfails because the producer till holds the lock. The
producer must start executing again simply to unlock the node and then the consumer can
resume execution.

All of thisunnecessary context switching can be avoided if the producer simply unlocksthe
node before signaling the consumer. Thisis done by moving the unlock node command up
into the appropriate places in the *if” structures producing pseudocode that is logically
equivalent to the original but is significantly more efficient during execution.

dbCaPut Link() /* optim zed */

if (LOCKNOWAI T node)
if (copy value is successful)
node. ever_witten = TRUE
if (node.state == OFF_WRI TELI ST)
node. state = ON_WRI TELI ST
LOCK Buffer
push node onto Wite List
UNLOCK Buf fer
UNLOCK node
V(LookAt Buf fer)
el se
raise alarm/* overwite */
UNLOCK node
endi f
el se
print error message
UNLOCK node
endi f
el se
raise alarm/* node already |ocked */
endi f

Thissolution tothetask synchronization problem ensuresthat no request will sit onthe Write
List indefinitely, i.e., the consumer will always be signalled to find the node and attempt to
writeit. Itispossible, however, for the consumer to wake up and inspect the Write List only
to find nothing there.

4.5 Known Problems — Output Links

Asmentioned earlier, output linksare essentially managed by channel access. Thefollowing
describes acknowledged problems in the implementation of output links.

45.1 Writing Values

Output values are written from the Write List to remote process variables using ca_put().
Calling ca_put() from asource |OC ultimately resultsin acall to doPutField() on the target
IOC. Unfortunately, dbPutField() writesthe value to the field and then decides whether or
not to processthetarget record based on the definition of that field in the destination record’s
ASCII definition. Thisiswrong. Whether or not arecord gets processed as aresult of an
output link is determined by the process passive/nonprocess passive specification on the
link, not the ASCII definition of the target record type.

4.5.2 Connection Management

The destination of the output link has no way of knowing if its value is stale because the
source |OC isdown. Further, oncethe source |OC isrebooted, until therecord that specifies
the output link is processed, the value of the source of the output link and the value of the
destination of theoutput link will beout of synchronization, i.e., thedestinationwill still have
the last value received from the last ca_put().

Currently, it is necessary to spawn a separate vxWorks task from the output demon whose
only function is to inherit the output demon’s channel access context and make a call to
ca_pend_event() that waits forever. Thiskludgeisthe only known way to assure that lost
connections are re—established when connecting |OCs using channel access.

5 Comments on the Implementation

In thissection we address overall issues associ ated with theimplementation. We discussthe
implementation’s commitment to loose coupling between 10Cs, describe the impact of
introducing new database field types, introduce new alarm types, and identify some of the
issues and problems that are, as yet, still unresolved.

5.1 Loose Coupling between 10Cs

One of the primary goals of the EPICS system isto maintain loose coupling between |OCs.
The motivation for thisis clear and well-founded; however, the argumentsfor that decision
are beyond the scope of this document.

The implementation of input and output links has strongly adhered to this goal by reading
from and writing to buffersthat arefilled asynchronously. The extent to which tighter cou-
pling existsasaresult of theimplementation is manifested by theintroduction of new alarm
types discussed in section 5.3.

5.2 Impact of Adding New Field Types

There should be no need to change any of the codein theimplementation asaresult of adding
new database field typesin the future. Provided that new field types are properly handled
inchannel access(i.e., intheestablishment of monitorsandinca_put()), theimplementation
is entirely immune from any potential anomalies introduced by new database field types.

5.3 New Alarms

Asmentioned in section 2.3, by extending the reach of database linkswe areintroducing op-
portunities for more things to go wrong. In dealing with these new types of errors, we are
required to make additionsto the conditions that can raise alarms during record processing.
The following is alist of conditions introduced by the implementation that are capable of
raising alarms.

Severity Status Function Description
VALID LINK dbCaGetLink() The monitor channel to the remote

source process variable on an input
link is discovered disconnected.

VALID LINK dbCaProcessOutlinks() The output channel to the remote
destination process variable on an
output link is discovered to be
disconnected by the output demon.

VALID LINK dbCaPutLink() The last value to be written was not
written in time by the output demon
and is being overwritten by the new
value.

VALID LINK dbCaPutLink() A problem occurred when copying
the value from the source process
variable to the temporary store for
the output demon. Thevalueinthe
temporary storeislabeled invalid
instructing the output demon not to
send the value, however, the correct
valueis never sent.

VALID LINK dbCaPutLink() The output demon or connection
handler had the lock when record
processing tried to write another
value out on the link. Record
processing did not wait and the
write was aborted.

5.4 Unresolved Issues — System Wide

Thisimplementation is only intended to implement input and output links that are nonpro-
cess passive and output type links that are nonmaximize severity. The problems of how to
implement process passive, output maximize severity links, and forward links are still un-
solved.

10

5.5 Known Problems — Overall Implementation

The following describes the acknowledged problems we encountered in providing the im-
plementation. They are, as yet, still unresolved.

5.5.1 Channel Accessand Database Technologies

Channel access has not been updated to understand the new views of databases. Any .cfile
that makes callsto channel access, and hence requiresthe appropriate channel access header
files, cannot includethe new database header files. Therefore, we cannot mix channel access
and database calls and/or structuresin the same .cfile.

5.5.2 Connection Management

Moving aphysical database from one |OC to another will cause all the channel access con-
nections attached to it to be broken and never become re—established aslong as the database
resides on the new IOC. Channel access can only re—establish those channels if the
associated process variables, not necessarily the original physical database, are booted onto
the original 10C.

6 New Functions

Following is a description of each of the new functions provided by our implementation.
Each function is described in a manual page format.

Some of the new functions return values to indicate success or failure. Some of those func-
tionscall existing EPICSfunctions. Occasionally, when functionscall existing EPICSfunc-
tions, their return statusis based on the return status received from the existing EPICS func-
tions. For example, dbCaAddDbCal nlink() callsthealready existing doNameToAddr () and
thereforeiscapableof returning any return codethat doNameToAddr () canreturn, including
its return code to indicate successful completion.

Throughout the following documentation we have adopted a naming convention regarding
arguments that refer to database field types. The convention is as follows:

{dest, source}_{new, old} {dbf, dbr} type
where
dest — a description of a destination database field type

source — adescription of a source database field type

new — a description using the new database field types
old —adescription using the old database field types

dbf — a description using the DBF_XXX field type
dbr — adescription using the DBR_XXX field type

11

NAME
dbCaAddinlink() — called for each input PV_LINK during record initialization

SYNOPSIS

| ong dbCaAddl nl i nk(plink, pdest_record, dest_fiel dnane)
struct link *plink;
voi d *pdest _record;
char *dest fi el dnane;

DESCRIPTION

This routine is called during record initialization for each input link that is still
PV_LINK, i.e., thoselinksthat failed to resol ve database addresses during database
initialization and, hence, be convertedfromPV_LINK toDB_LINK. Itfindstheda
tabase address of the destination process variable specified by pdest_record and
dest_fieldname by calling doNameToAddr() and dynamically allocates the ap-
propriate number of bytesasatemporary storefor incoming valuesfrom channel ac-
cess monitors. Thelink typeis converted from PV_LINK to CA_LINK.

RETURNS
any return code from doNameToAddr() (including its success rc)
S dbca failedmalloc unable to dynamically allocate memory
S dbca nullarg one of the incoming pointer arguments was NULL
S dbca _dbfailure problem in calling one of the db routines
SEE ALSO

dbCaGetLink() and dbCaProcess| nlinks()

12

NAME
dbCaAddOutlink() — called for each output PV_LINK during record initialization

SYNOPSIS

| ong dbCaAddQut !l i nk(plink, psource_record, source_fiel dnane)
srtuct link *plink;
voi d *psource_record;
char *source_fi el dnane;

DESCRIPTION

Thisroutineiscalled onceduring recordinitialization for each output link that is still
aPV_LINK,i.e.thoselinksthat failed to resol ve database addresses during database
initialization and, hence, be converted fromPV_LINK toDB_LINK. It findstheda-
tabase address for the source process variable specified by psource record and
source_fieldname by calling doNameToAddr() also dynamically allocates the ap-
propriate number of bytes memory to act as atemporary store between the time the
record is processed and the time it is sent to the remote process variable. The link
type is converted from PV_LINK to CA_LINK.

RETURNS
any return code from doNameToAddr() (including its success rc)
S dbca failedmalloc unable to dynamically allocate memory
S dbca nullarg one of the incoming pointer arguments was NULL
S dbca_dbfailure problem in calling one of the db routines
SEE ALSO

dbCaPutLink() and doCaProcessOutlinks()

13

NAME
dbCaGetLink() — called by record processing when inputting on a CA_LINK

SYNOPSIS

| ong dbCaGet Li nk(pl i nk)
struct link *plink;

DESCRIPTION

This routine is called during record processing when reading from an input
CA_LINK. If theconnectiontothe sourceprocessvariableisnoted to bedownwhen
this routine gets executed, then no value is read and an alarm condition israised in
the destination record. If the connection isintact, then the valueis copied from the
temporary store acquired by dbCaAddlinlink() by calling dbPut().

RETURNS
any return code from dbPut() (including its success rc)
S dbca nullarg one of the incoming pointer arguments was NULL
S dbca foundnull found NULL pointer where one should not be
SEE ALSO

dbCaAddi nlink() and dbCaProcessl nlinks()

14

NAME
dbCaLinklInit() — called during 1OC initialization

SYNOPSIS
voi d dbCaLi nkl ni t (count)
int count;
DESCRIPTION

Thisroutineiscalled twiceduring |OC initialization, once before record support ini-
tidizationtoinitialize variablesand once after record support initialization to spawn
necessary tasks. The argument count must be one for the first call and two for the
second call.

RETURNS
N/A.

SEE ALSO
None.

15

NAME
dbCaProcess! nlinks() — spawned once after al record initialization

SYNOPSIS
voi d dbCaProcesslnlinks()

DESCRIPTION

Thisroutine is spawned as a separate task at the end of 10C initialization. If there
areno input CA_LINKSsin the database, this task terminates immediately. If there
areinput CA_LINKSs, thisroutine initiates the search for the remote source process
variables and establishes monitors on them specifying our own event handler rou-
tine. It then waits forever for incoming events on those monitors.

Our event handler routine copiesthe dataval ue and the alarm statusfrom the remote

source process variable. Later, when processing the record with the input link, the
value and alarm status of the source processvariableareread from the copied val ues.

RETURNS
N/A.

SEE ALSO
dbCaAddinlink() and dbCaGetLink()

16

NAME

dbCaProcessOutlinks() — spawned once after all record initialization

SYNOPSIS

voi d dbCaProcessQutlinks()

DESCRIPTION

Thisroutine is spawned as a separate task at the end of 1OC initiadization. Itisthe
output demon. If thereareno output CA_LINKSsinthe database, thistask terminates
immediately. If there are output CA_LINKS, thisroutine initiates the search for the
remote process variables and provides a connection handler routine.

This routine waits for requests to output values to remote destination process vari-
ables. Asitreceiveseachrequest, theconnection statusto theremote destination pro-
cessvariableischecked. If the connectionisintact, the valueiswritten. If the con-
nection has been broken, an alarm condition is raised in the source record.

The connection handler routine is responsible for detecting changes in connection
statusand processi ng those connectionswhose status goes from di sconnected to con-
nected. For those connections, if arequest to write the value has ever been made, the
value isimmediately scheduled to be written again.

RETURNS

N/A.

SEE ALSO

dbCaAddOutlink() and dbCaPutLink()

17

NAME
dbCaPutLink() — called by record processing when outputting on a CA_LINK

SYNOPSIS

| ong dbCaPut Li nk(plink, poptions, pnrequest)
struct link *plink;
| ong *poptions;
| ong *pnrequest;

DESCRIPTION

Thisroutineiscalled during record processing when writing to an output CA_LINK.
Thevaueto bewritteniscopied to ashared buffer using the database routine dbGet-
Field(), hence the need for the two arguments poptions and pnrequest.

After thevalueiscopied, thisroutine determinesif there is apending output request
onthisprocessvariable. If thereis, an aarmisraised toindicatethat an output value
has been lost (not outputted) and anew value has been written over it. If thereisnot,
another task, the output demon, is signaled to wake up and write the value.

RETURNS
any return code from dbGetField() (including its success rc)
0 successfully raised alarm status
S dbca nullarg one of the incoming pointer arguments was NULL
S dbca foundnull encountered aNULL pointer where one should not be
S dbca dbfailure problem in calling one of the db routines
SEE ALSO

dbCaAddOutlink() and dbCaProcessOutlinks()

18

